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Representations are derived that describe the interactions of the waves that are
reflected from both perfectly rigid and perfectly free interfaces during the arrival
of a centred wave with any wave travelling in the opposite direction. These are used
to analyse the early stages of the deformation produced when the traction at the loaded
boundary continues to vary after changing discontinuously.

1. INTRODUCTION

In the first part of this paper (part IT of the series) we analysed the wave interaction that occurs
when a centred wave is reflected from an interface with some other material. It was shown that
this problem arises during the early stages of a wide variety of technically important deformations
that are produced by sudden loading. In general, only at the subsequent reflexion from the loaded
boundary do the characters of these deformations begin to differ. Usually, it is at this second
reflexion that the peak stresses and strains occur. In this paper we show how to analyse this second
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240 J. Y. KAZAKIA AND E. VARLEY

reflexion in two limiting cases: when the first reflexion is from a rigid boundary and when the first
reflexion is from a perfectly free boundary.

In § 2 we derive a representation that describes the interaction of the wave reflected from a rigid
interface during the arrival of a centred wave with any other wave travelling in the opposite
direction. Since this reflected wave is also centred, this representation closely resembles that
already given in part I1. As a first application of this representation, in § 2.1 we analyse the inter-
action of this reflected wave with the wave produced byvarying the applied load after it is changed
discontinuously. This problem arises, for example, when a shock wave with an expansion fan
behind itisincident at one of the boundaries of a slab that is held fixed atits other boundary. It also
occurs when the tension at one end of a string, which is held fixed at its other end, is suddenly
changed discontinuously and then allowed to vary in some prescribed manner. In particular, if
the traction at the loaded boundary again changes discontinuously before the reflected wave
reaches this boundary another centred wave is produced that interacts with the centred reflected
wave. The interaction of these two opposite travelling centred waves is discussed in detail in
§2.2.

As another application of the representation derived in § 2, in § 3 we analyse the interaction of
the centred wave reflected from the rigid boundary and the wave reflected during its arrival at
the loaded boundary. This interaction is discussed for two situations: when the traction is known
during this reflexion and when the velocity is known.

In §4 we also derive a representation that describes the interaction of the wave reflected from a
perfectly free interface during the arrival of a centred wave with any other wave travelling in the
opposite direction. This is used to analyse situations that are similar to those described in §§2
and 3.

2. THE WAVE REFLECTED FROM A RIGID INTERFACE DURING THE
ARRIVAL OF A CENTRED WAVE

First we derive a representation that describes the interaction of any f-wave with the a-wave
reflected from a rigid interface during the arrival of a centred wave. Since this a-wave is also
centred, the representation closely resembles that already given by equations (II, 4.8)—(1II, 4.9).

Equations (II, 7.3)—(I1, 7.4) imply that in the a-wave reflected from a rigid boundary

m(a) = — (v+pa) F'(a). (2.1)

When this expression for m(o) is inserted, and the second of equations (II, 9.17) is used, equation
(11, 2.6) can be written
24%01fdc + [ pe(t—te) + (X — Xe)] F' () = 0. (2.2)

Since this is of the same form as equation (II, 4.1), an argument that is almost identical with that
used in II, §4 to obtain equations (II, 4.8) and (11, 4.9) yields the equations

{—to = Y (B) Ad 4+ o) (2.3)
and X~ X, = (B) A+ Mo (). (2.4)

u can be computed from the fact that
u=2G(p)—-i(4), (2.5)
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LARGE AMPLITUDE WAVES IN BOUNDED MEDIA. III 241
where G(f) is related to ¥(f) and o(f) by the compatibility condition
do/df = vy dG/dp. (2.6)

As the a-wave travels from X = 0 to X = 1 it traverses three distinct regions: the first inter-
action region, the simple wave region, and the second interaction region. These are labelled
regions II, IIT and IV in figures I1, 5 and II, 6. As it traverses region II, equations (II, 6.1) and
(11, 6.2) imply that the variations of X and 4 with ¢ at its front are given by

X=1-t1 and 4=1t2 (2.7)

When these expressions are inserted in equations (2.3) and (2.4) and then ¢is eliminated between
these equations it follows that at the front ¥ and o are related by the equation

1—92 = (0 +1) (1— X, — Mo). (2.8)

However, since ¥ and o are constant at any S-characteristic, relation (2.8) also continues to hold
throughout region II. If equations (2.3) and (2.4), which are linear in ¢ and o, are now used to
express ¢ and o in terms of 4, X and £, and if these expressions are inserted in the relation (2.8),
an equation for 4(X, ?) is obtained. The solution to this equation yields the expression (II, 6.9).
Asimilar argument yields the result that o = 0in region III. Eliminating yr from equations (2.3)
and (2.4) then yields the result (11, 9.16).

t
v
L G=¢@?)
F: :8(7120) centred wave
regions
I >
2 b
II
0 T G=2
1 .
G=0
0o X/D 1 O[L/T0) 1

Ficure 1. The wave pattern produced in an elastic slab which is rigidly fixed at X = 0 when the traction at
X = D varies in the manner indicated on the right. In region ITI’ two opposite travelling centred waves
interact.
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242 J. Y. KAZAKIA AND E. VARLEY

2.1. Varying applied load

When T varies at X = 1 after changing discontinuously from zero to 73(0) at ¢ = 0, region III
is not a simple wave region since it does not border a region where G = constant (see figure 1).
However, if the variation in the traction at the interface does not cause a shock to form,
region IIT does border a simple wave region in which

A=nB) and 1—X =n2(p)(t—p). (2.9)

n?(t) denotes the variation in 4 at X = 1 corresponding to the variation 73(¢) in 7. A sufficient
condition that a shock does not form is that

dn/df < ind. (2.10)

Now the front of the reflected wave does not propagate with constant speed after crossing the
region where it interacts with the incident centred wave since it is refracted by the disturbance
described by equations (2.9). These equations, together with the first of equations (II, 2.1)
imply that the trajectory of the front can be described by the equations

X=XF(ﬁ)El—n(ﬂ)[l—%f:n(s)ds] and t=tF(ﬁ)E,B+;l-(-%—5[1——;-f:n(s)ds]. (2.11)

In these equations £ varies in the range 0 < § < f,, where f,, the arrival time of the frontat X = 1,
is determined from the condition that

A
JI n(s)ds = 2. (2.12)

0
Note that in equations (2.11),

as >0+, Xp—>1-n(0+) and ¢—1/n(0+). (2.13)

In order to determine ¥ and o in region III simply insert the expressions (2.9) and (2.11)
for 4, ¢ and X at the front in equations (2.3) and (2.4) and then solve these linear equations for
Y and o. This procedure yields

n 1

¥ = m[(XF —Xe) = M(ty—1t)] and o= m[(XF — Xe) —n*(tp —tc)]. (2.14)
Now that these functions have been determined, equations (2.3)-(2.6) can be used to describe
the interaction of the a-wave with the simple wave (2.9). Note that in equation (2.5)

G = é(n?). (2.15)

This follows either from equations (2.6), (2.11) and (2.14) or, more directly, from the fact that
F = 0 and ¢ = ¢(n?%) at the front (2.11).

2.2. Interaciion of two centred waves

As an example of the general procedure described above we consider the situation when
T(t) again changes discontinuously at time #,( < fa) in such a way that n decreases discontinuously
from n(f,—) to n(fy+). This generates a centred wave at (X,¢) = (1,{,) that interacts with
the centred wave reflected from X = 0 in some subregion (labelled region III’ in figure 1) of
region ITI. This situation occurs, for example, when a slab that softens in compression is impacted
by a blast wave that produces a pressure variation of the form shown in figure 1 at the interface
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LARGE AMPLITUDE WAVES IN BOUNDED MEDIA. III 243

X = 1. Itis supposed that in the time interval 0 < ¢ < ¢, the pressure either continues to increase
or does not decrease fast enough for condition (2.10) to be violated. Alternatively, the slab could
be a string which is suddenly pulled into tension at ¢ = 0 and then again at ¢ = ¢,.

Equations (2.11) imply that as the front of the wave reflected from X = 0 is refracted by the
wave centred at (X, ¢) = (1,¢,)

XF =1- tln and tF = to + t]_n__]', (2.16)

where 7z varies in the range n(ty+) <n < n(ty—) (2.17)
1 [t

and the constant =1 _§f n(s) ds. (2.18)
0

When these expressions for X}, and #y are inserted in equations (2.14) and the resulting expressions
for 1 and o are inserted in equations (2.3) and (2.4) these imply that in region III’

t=1yY'A%+¢" and X+1=y'At+ Mo, (2.19)
where

Y = (M—n?) [ty M+ (Mty—~2)n+t,n%] and o' = (M—n?)"1[2-2t,n—in?]. (2.20)

Equations (2.19), with ¥’ and ¢’ given as functions of the characteristic parameter n by equations
(2.20), determine the variation of 4 in region ITI’. The variation of # can then be determined from

the fact that u = 2¢(n?) — (). (2.21)

Relations (2.19) and (2.20) can be used to determine A as a simple explicit function of (X, ¢).
For, when n is eliminated from these equations a quadratic equation for 4 is obtained whose solu-

tion is 4 - Xz_( AAthg;-(?l_ (Z:)+ j%— 1 (2.22)
Moreover, if 4 is considered as a function of the normalized distance and time measures
X=[1-X-5]/|MBZ -3} and ©=[M(t—1t))—s]/|Mt;—s2|, (2.23)
where §p = 1—3Mt, (2.24)
rather than as functions of (X, ), equation (2.22) implies that
A= MAX]I), (2.25)
where A= (X2+1)/(#+1) when s < M8 (2.26)
while A= (X2—1)/@—-1) when 2> Mz, (2.27)
In both cases, at constant a, dX/df=-4 (2.28)
and at constant B, dX/df = 4. (2.29)
Equation (2.28) integrates to give
S A ] a0
equation (2.29) integrates to give
L R AR R ean
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244 J. Y. KAZAKIA AND E. VARLEY

In equations (2.30) and (2.31), & and f are characteristic parameters. To determine 5 as a func-
tion of z use the fact that according to equations (2.16) and (2.23) at the front of the x-wave

X= (tyn—s)[|M3—3s3|} and = (Mt;n=1—s))[|M3—s3|b. (2.32)
When these expressions are inserted in (2.30) and (2.31) these equations yield the result that

F-3 n*—M
TR 2M (ty]s) n+ M?

(2.33)

where the value of the characteristic parameter  at the front

_ {Sfl(Mt%~s%)% when  (2.26) holds,
U = ,
"7 —sr2(s2— M)t when  (2.27) holds.

Equations (2.33) and (2.31) can be used to determine z as an explicit function of (X, ¢). Condition
(2.21), with 4 determined as an explicit function of (X, #) from equations (2.25)—(2.27), then
determines z as an explicit function of (X, {).

3. THE SECOND REFLEXION

When the a-wave that is reflected from the rigid interface X = 0 during the arrival of
a centred wave reaches X = 1 at ¢t = f, it starts to interact with the wave reflected from this
interface. The form of this reflected wave is determined by what happens at X = 1. The simplest
situation is when 74(t), and consequently n(8), is known during this second reflexion. Then, in
region IV (see figure 1) the deformation is still described by equations (2.3)—(2.6). Now though,
in the expressions (2.14) for ¢ and o

Xp=1 and ¢z =0. (3.1)

3.1. Reflexion from an interface at which T is constant

In the special case when T is constant, = 7 say, at X = 1 during the second reflexion, so that
n is constant in region IV, equations (2.3), (2.4), (2.14) and (3.1) imply that

4 =§n?[(1+9) +[(1+7)*—4Mn=>9]}]%,  where 5= (1-X)/(Mt-2). (3.2)

These equations determine 4 as an explicit function of (X, ¢) in region IV. Then, #(X,t) can be
determined from the fact that

B =[(M—n?) td% +2(n— A¥)] [n[ M —nd?], (3.3)
although a much simpler relation that can be used to calculate the £ = constant curves is
t—f = (MF—-2) (1-X)[[(Mf—2)n*+ (n*— M) (1 - X)]. (3.4)

To determine z(X, t), we must first calculate G(£) from condition (2.6). This is easily done for
when the expression (2.14) for ¢ and o are inserted, with Xy and #; given by equations (3.1),
equation (2.6) implies that

(2v+ uf)dG[df = n. (3.5)
This equation integrates to give

G =¢é(n?) +pnln (ﬁg:i) (3.6)
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LARGE AMPLITUDE WAVES IN BOUNDED MEDIA. III 245

u(X, t) can now be computed from conditions (2.5), (3.2), (3.3) and (3.6). The a-characteristics
can be determined directly from the fact that

at constant ¢, dX/df= —4, (3.7)

where 4 is given by equation (3.3). Equation (3.7) integrates to give the result that at constant e,
(Mt—2) A exp[pn=té(n?) —é(4)] = nt (Mz—2) (3.8

M—ﬂA% PLA 4 - M—n2 o H * )

where & denotes the arrival time of the characteristic at X = 1.

3.2. Shock formation

The main effect of the wave reflected from an interface at which 7'is constant is to harden the
material in region IV. An argument that is almost identical to that used in II, §6.2 shows that
this hardening is sufficient to produce a shock if 4 attains the value

As = n=2M2[1— (1 — M-1n2)1]2, (3.9)

Clearly, this cannot occur for a non-ideal material because then #? > M. However, for a non-ideal
material it always occurs if the original centred wave is strong enough to produce yield during
the first reflexion from X = 0 (see I, figure 21). If yield does not occur at X = 0 a shock can still

form in region IV if
Ay, < 4 < n?, (3.10)

where Ay, is the least value of 4 in region IV. 4;, can be determined in terms of M, n and the
strength of the original centred wave. To do this note that according to equation (3.2) 4 decreases
monotonically with £ at the front of the wave reflected from X = 1 (see figure 1) so that 4 = A4y, as
the front crosses the back of the a-wave reflected from X = 0. There,

¢ = ¢, =¢é(nd) +é(n?), where nd=A,(0+) and Ay, = A(c,). (3.11)

When the appropriate expressions for 4(¢) are used, conditions (3.10) and (3.11) imply that a
shock will only form when

M(ng+n—1)—nyn
M+ ngn— (ny+n)

< —Ag[l—(l—M-lﬁ)%]. (3.12)
When condition (3.12) is satisfied, an argument that is identical to the one used in II, § 6.2 shows
that the shock forms at the front of the wave reflected from X = 1 at the point (X, Zs,), where

M—n
M —n?

)A§ and 1, = Io +2(-44~ﬂ) Ah, (3.13)

X, = Xc+2( Y-

Condition (3.12) on M, n and z, can be replaced by an equivalent condition on M, 7/1; and
T.(0)/T. Figure 2 depicts the relation between M and the least value of 75(0)/7; that will cause
a shock to form when 7 = 73(0) (7 = ny) and when 7 = 0 (z = 1). The first case occurs when 7T°
is held constant at X = 1 after changing discontinuously at £ = 0. The second case occurs when
the load at X = 1 has again returned to its ambient value by the time the wave that is reflected
from X = O reaches X = 1. Note that in this later case condition (3.12) implies that a shock will

form only if
Aa(0) = nd < M?[1—(1—-M-1)¥]2, (3.14)
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246 J. Y. KAZAKIA AND E. VARLEY

However, according to (11, 7.15) the right hand side is the greatest value of 4.(0), which corre-
sponds to the least value of 7;,(0)/7], that will cause the material to yield at X = 0. Consequently
if the material does not yield at X = 0 a shock cannot form in region IV when n = 1. When
7/71 < 0 (n > 1) a shock can only form in region IV when the material yields at X = 0. It should
be noted that the above results are only valid if a shock has not already formed in region III.

( Ta(o)l Tvl)crit
1.0
r=(-

v=1(0)

0.6

04
! O - L L
-3 -1 1 3

M -

Ficure 2. The relation between M and the least value of 7,,(0)/7] that will cause a shock to form in region IV
when 7" = T,(0) and when T = 0 at X = 1 during the second reflexion.

3.3. Reflexion from an interface at which u s constant

When #, rather than 7, is specified at X = 1, n(#) must be calculated before equations (2.3)—
(3.14) can be used to describe the deformation in regions III and IV. This is easily done in
region I1I, where 0 < £ < fa. For, since F = 0at X = 1 when 0 < ¢ < fa,

nt = Aua(B)) for 0< f < fa, (3.15)

where ua(t) denotes the variation of # at X = 1. In region IV, though, »(£) is a little more difficult
to calculate. To do so use the fact that according to equation (2.5)

G(B) = F[ua(B) +E(n?)]. (3.16)
When this expression for G is inserted in (2.6), with ¥ and o given by (2.14) with X, = 1 and
Iy = [, the equation { %-'- n ;V% .17
n—Mdp 2—-MpB  * dp )
is obtained for n(£). In general, this equation must be integrated numerically. However, in the
special case when u, is constant, = v say, it integrates to give

n? = M[1+K(Mp—2)%]71, (3.18)

M— A()

where the constant K=o 2 (3.19)
A(v) (2—MPpa)*
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LARGE AMPLITUDE WAVES IN BOUNDED MEDIA. III 247

When the expression (3.18) for z(£) is inserted in equations (2.14) these yield simple expressions
for y(B) and o(f) in region IV. When these expressions are inserted in equations (2.3) and (2.4)
the resulting equations can be solved to give ’

1+ K(1-X)
and Mp—g - M+ X3 (3.21)

TYK(1-X) (Mi—2)"

Now that 4 is known as an explicit function of (X, ) the a-characteristic can easily be determined.
They are given by the condition that at constant o

Mi—X-1
—K(1-X) (Mi—2)

= constant, = Mz —2 say. (3.22)

u can be calculated from equations (2.5) and (3.16) which imply that
u =v+0¢(n?) —é(4), (3.23)

where 4 is given by (8.20) and »n?is determined as an explicit function of (X, t) from conditions
(3.18) and (3.21).

Ficure 3. Typical variations of strains at several representative particles when X = 0 is rigid and when T'is held
constant at X = 1. The value of M = 1.1 and T, = 0.947).

3.4. Illustration

Figure 3 depicts typical variations of strain at several representative particles for the case
when X = 0isarigid boundary and when 7is held constant at X = 1 up to and during the second
reflexion. The characteristic net associated with this deformation is shown in figure II, 6. The
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valueof M = 1.1 and 75 = 0.94 7. The particle X = 0.23 lies in region I for some time, and then
in region IT at all subsequent times. The particle X = 0.40 lies in region I and then in region II
for finite time intervals, and then in region III at all subsequent times. The particle X = 0.46 lies
in region I for a finite time, then in region III at all subsequent times. Finally, the particle
X = 0.8 lies in region I for a finite time, then in the region where 7" = T, for a finite interval of
time, and then in the second interaction region IV until it is influenced by the wave that is re-
flected from the shock (see figure II, 6).

The broken curve in figure 3 depicts the variation in strain at X = 0.8 when #, rather than 7,
is held fixed at X = 1 up to and during the second reflexion. Over the time interval considered
the deformation at the other particles is the same as when 7 is held constant.

4, THE WAVE REFLECTED FROM A PERFECTLY FREE INTERFACE DURING
THE ARRIVAL OF A CENTRED WAVE

In this section we obtain a representation that describes the interaction of the wave reflected
from a perfectly free interface during the arrival of a centred wave with any other wave travelling
in the opposite direction. To do this note that according to equations (II, 6.5) and (II, 6.6), in

this reflected wave

1—Me
= = 1 Erusane—
m=1 and F=p1lln T (4.1)

When this information is inserted, equation (II, 2.6) and the second of equations (1I,2.1) imply
that variations of X and ¢ with ¢ at constant £ are governed by the linear equations

24%0¢f0c+ [pt+v(1+X)] = 2(1— MY exp[pu(c—G)] and 0X/0c = —A0¢0c. (4.2)
These integrate to give

b= M~ = () Ad 4 o (B) + (A2 — M) exp[u(é(d) - G)), (4.3)

and X =y (B) A+ Mo () + (1 — A43%) exp [u(é(4) — G)]. (4.4)

Equations (4.3) and (4.4) are only compatible with the first of equations (II, 2.1) if ¢, o and G

satisfy the compatibility condition
do/dp = vipdG/dp. (4.5)

Once the functions ¢, o and G are known the variation of 4 with (X, ¢) follows from equations
(4.3) and (4.4), while the variation of u follows from (2.5). For example, in region II

=0, o0=0 while 0<G<cy (4.6)
Also, if T'is held constant at X = 1 after changing discontinuously at ¢ = 0, in region ITI
0=0, G=¢, and 0K Y <1, (4.7)

4.1. Varying applied load

The calculation of ¢, o and G in region IIT when T varies at X = 1 is straightforward. G is
again given by (2.15) while, according to equations (4.3) and (4.4), ¢ and o are determined
from the linear equations

lp—nl=nY+0o and Xp—1+4+n=mp+ Mo, (4.8)
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where Xi(f) and tp(f) are given in terms of #(f) by equations (2.11). These conditions yield

1n2+ M (£

= Ap2 __n 1n"+ 2 i _n® n
G = ¢(n?), WNM'_n2Mﬁ+2n2+M 0n(s)ds and 0‘-—722~_Mﬁ+M

_._nz

f :n(s) ds. (4.9)

In particular, in region ITI’ where the wave reflected from X = 0 interacts with a wave centred
at (X,¢) = (1,4,) equations (4.9) imply that
n2+ M n?

G=¢m), ¥ = Mtom—é—na—k (1-1)% and 0 = fy ="

eVt M—i-z(l‘“tl)

e (410)
When the expressions (4.10) are inserted in equations (4.3) and (4.4) these provide explicit
expressions for X and ¢ as functions of 4 and the characteristic parameter z. Unfortunately, these
equations cannot be used to determine 4 as an explicit function of (X, ¢) as was the case when
X = 0 was a perfectly rigid interface. However, the trajectories of constant 7" and ¢ can easily
be obtained by holding 4 at its approximate constant value and varying z over the range (2.17)
in these expressions.
4.2. Reflexion from an interface at which T is constant

When 7'is constant, = o, during the reflexion from X = 1itis a simple matter to calculate i,

o and G in region IV. In terms of the characteristic parameter

A =expluld-G)], (4.11)

Y= Z%}/\—{—K/\—lm and o = M‘l[l—{—;’:—i—i /\—nK)l””], (4.12)

where the constants d and z are the values of ¢ and 4% corresponding to 7" = ¢, and the constant
p g s

M+n)
14+n)’

n

With #(A) and o(A) given by equations (4.12), in region IV equations (4.3) and (4.4) can be
written t— M- = A4 o4 A(A~ = M) exp [p(é(4) —ca)] (4.14)
and X =yAb+ Mo+ A(1—A43%) exp [p(¢(4) —¢a)]- (4.15)
Equations (2.5) and (4.11) imply that

u=2d—c—2u1InA. (4.16)
In particular, at X = 1, where ¢ = 4, equations (4.14) and (4.16) imply that

u=d—2u1lnA, (4.17)

where the variation of A with ¢ follows from the relation

1—M1 M —n?
— -1 1n
t=2M"142 T A+ K n LR (4.18)

4.3. Reflexion from an interface at which u is constant

When « remains constant at X = 1 during the second reflexion, it is best to express G, ¢ and &
as function of the characteristic parameter n in region IV. Although the procedure for calculating
these functions is straightforward, the algebra involved is rather messy: only the result will be
quoted.


http://rsta.royalsocietypublishing.org/

\

()

y

A

)i

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

L)

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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Whenu =vat X =1,
G =3(¢(@*) +v), ¥ = exp[u(é(n?) —v)]-K|n®— M| (4.19)
and Mo = 1 —exp[3p(é(n?) —v)] + Kn|n®— M |3, (4.20)
where the constant K = M|M]A(v)—1]. (4.21)

The results presented in this paper were obtained in the course of research sponsored by the
U.S. Army under contract no. DA AD05071-C-0389 by the Ballistics Research Laboratories,
Aberdeen Proving Ground, Maryland.
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